Identification of linear and non-linear systems with Walsh wavelet packets
نویسنده
چکیده
An algorithm for the identification of the parameters of models, based on the least-squares method and exploiting the properties of the signal wavelet packet analysis, has been proposed. A short introduction to wavelet and wavelet packets’ analysis was presented. It has been shown that the n-th step of the Walsh wavelet packet analysis can yield filtered, smooth forms of the deterministic or randomly disturbed signal and its derivatives, which generally enable the identification of the model parameters being sought. Multipliers needed to determine the actual, discrete values of the signal function and its derivatives have been formulated. The proposed approach to the identification of model parameters has been validated for linear and nonlinear differential equations of the first to fourth order inclusive. It was stated that the Walsh wavelet packet analysis is an efficient and numerically effective tool in parameters identification process of complicated nonlinear problems of mechanics.
منابع مشابه
Cyclic wavelet systems in prime dimensional linear vector spaces
Finite affine groups are given by groups of translations and di- lations on finite cyclic groups. For cyclic groups of prime order we develop a time-scale (wavelet) analysis and show that for a large class of non-zero window signals/vectors, the generated full cyclic wavelet system constitutes a frame whose canonical dual is a cyclic wavelet frame.
متن کاملSoliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملWavelet collocation solution of non-linear Fin problem with temperature dependent thermal conductivity and heat transfer coefficient
In this paper, Wavelet Collocation Method has been used to solve nonlinear fin problem with temperature dependent thermal conductivity and heat transfer coefficient. Thermal conductivity of fin materials varies any type so that we consider thermal conductivity as the general function of temperature. Here we consider three particular cases, where we assume that thermal conductivity is constant,...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کامل